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Methods for Library Design and Optimisation

D.V.S. Green* and S.D. Pickett
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Abstract: The introduction of combinatorial chemistry groups into pharmaceutical companies provoked a
desire for efficient and effective methods for library design and optimisation. This, in turn, has resulted in a
large number of scientific publications, detailing a variety of approaches to the problem. This review attempts
to describe the major works in the literature, to set them in context both chronologically and scientifically, and
to identify the outstanding challenges that must be addressed, if this area of research is to maintain the rapid
progress seen hitherto.

1. INTRODUCTION

The past decade has seen the pharmaceutical industry
invest heavily in automation, most notably in screening,
compound handling and chemical synthesis. The medicinal
chemist has access to an impressive, and ever increasing
range of chemical reactions, which can be carried out in
parallel on robotic systems [1]. For those wishing to build
large collections of compounds for high throughput
screening, or those lead optimisation projects that are able to
utilise these automated reactions, the associated increase in
throughput offers the opportunity to reduce the cycle time
from lead identification through to candidate selection.
However, although the efficiency of a chemistry team
equipped with such automation, measured in terms of
number of compounds produced, may be increased by, say, a
hundred fold, this by no means guarantees the effective
exploration of the accessible chemical space. For example,
should a lead series be conveniently synthesised by a three
component reaction, and each reactant could be drawn from a
pool of 200 (a rather conservative example, should the
required functional groups be from common reactive species
such as amines, aldehydes or acids), the number of possible
products is 8 million, which is approximately the same
number of compounds as registered in Chemical Abstracts!
It is therefore, clear that some selection processes must occur
to enable an efficient navigation through these possible
products, now universally referred to as "Virtual"
compounds. These processes have evolved from simple
reagent selection procedures, through to the state of the art
methods, which utilise sophisticated multi-dimensional
optimsation algorithms [2]. Before these algorithms are
explored in detail, it is useful to define some terms that will
be used throughout this text. A Virtual Library is a set of
compounds that could be synthesised from the application of
a particular reaction scheme to an appropriate set of reactants.
The process of Library Design, or Optimisation, is the
application of a process that attempts to identify the optimal
set of reactants given the design objectives. These objectives
will involve considerations such as activity prediction,
ADMET (Absorption, Distribution, Metabolism, Excretion
and Toxicity) properties, and the size of library to be made,
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cost of reagents and synthetic efficiency (including
combinatorial constraints).

2. PRODUCTS VERSES REACTANT BASED
DESIGN

The most facile Library Design method is an
extrapolation of traditional medicinal chemistry, whereby the
chemist uses their experience and knowledge of the SAR to
choose the next molecule(s) to make, or in this case, the set
of reactants to use. Indeed, this was the method of choice for
the pioneers of automated chemistry. However, experience
has shown [3] that this approach was only successful for the
most practical of the design objectives set out above, namely
cost of reagents and synthetic efficiency, at the expense of
the biological objectives, with the result that many of the
combinatorial libraries synthesised contained no biologically
active compounds, and many suffered from high molecular
weight and lipophilicity. There are several reasons for this,
but from a design consideration the most telling is the desire
to exploit a reaction to yield large numbers of products. This
gives rise to the use of multi-component reaction schemes
that, when coupled with a desire to use a "diverse" set of
reactants, lead to the large molecular weight products. For
those groups seeking to synthesis large numbers of diverse
structures, this design methodology was also flawed, partly
due to groups choosing to work around large chemical cores,
such as benzodiazepines (1) [4], and partly because reactant
lists were not selected with product diversity in mind. That,
product based diversity designs are instrinisically superior to
reactant based designs, was convincingly demonstrated by
Gillet et al. [5]. The results of this work indicated that the
most diverse set of compounds are chosen from a virtual
library by use of unconstrained product selection, followed
by the application of a combinatorial constraint to the
product selection (to satisfy synthetic efficiency objectives),
with the reactant based selections consistently rated as the
poorest method. However, product based design has several
obstacles, not shared by the relatively simple reactant based
method. Particularly when using computational measures of
diversity, it is imperative that the Virtual Library is
comprised of reactants that a chemist would be happy to use,
because many undesirable reactants (for example toxic,
expensive or unreactive moieties) would be selected by a
diversity measure because they are "different". In response to
this, tools were developed, which allowed the application of
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Fig. (1). Common methods for virtual library enumeration. In reaction-based methods, the reaction is encoded in a machine-readable
format such as SMIRKS [18]. When this reaction is provided with two reactants, they will react if they posses the functional groups
defined by the SMIRKS. In fragment marking, or “clipping”, the relationship between reactants and product must be specified
beforehand, often by hand, and the enumeration component of the process is then a relatively trivial step.

filters to lists of molecules [6,7]. The other major overhead
of product based design is the combinatorial explosion. In
our previous example, a chemist using reactant based design
would only have to consider 200+200+200=600 reactants.
In a product based design, the 8 million products must have
their structures enumerated, and a selection method applied,
which will involve the application of an algorithm and often
take quite a time. This is due to the combinatorics of the
selection procedure (the majority of examples will assume
the use of full combinatorial synthesis). For example, there
are 1026 different ways to choose 10x10 amines and acids
from a virtual library of 100x100 reactants [8]! For all but
the most simple of library designs, the combinatorics of the
problem remove the possibility of a systematic evaluation of
the solutions, and therefore all modern methodologies rely
on a stochastic method (such as a Genetic Algorithm,
Simulated Annealing or Monte Carlo algorithm) to find
solutions that meet the design objectives.

3. LIBRARY DESIGN PRE-REQUISITES

Before a detailed examination of the available algorithms
for library optimisation, there are some common pre-
requisites, which can be obtained in a variety of ways.
Firstly, a reaction scheme and associated reactants are
needed. The majority of algorithms will use molecular
descriptors based on the product structure, such as molecular
weight, calculated logP, a predicted affinity for a protein
from a docking algorithm and so on. Thus, a means to
enumerate the product structures is needed. The two most
prevalent methods (see Fig. 1) are fragment marking
(sometimes referred to as "clipping", as found in commercial

products such as Central Library [9], CombiLibMaker [10]
and the ACCORD toolkit [11]) and reaction-based
enumeration (as implemented with the Daylight toolkit [7],
and Afferent [12]). The enumeration may be accessed in three
ways: full enumeration, where the whole set of product
structures is enumerated up front; dynamic enumeration,
where the product structures are enumerated as required; and
implicit enumeration, where product properties are obtained
without product structure enumeration. Implicit enumeration
has been developed to cope with very large libraries of
product structures (> 1 million products). One approach [13]
uses a neural network to predict product properties on the
basis of the properties of reactants. A facile and intuitive
example of this would be to predict logP (the standard
algorithms, such as clogP [14], predict by the addition of
values for molecular fragments found in the product
structure), but several more complex properties are claimed
to have been modelled with success. The second
methodology [15] aims to reproduce the product properties
exactly, without enumeration of the structures. This method
works only for properties that can be described as additive
with respect to structure: molecular weight, logP, "Lipinski"
properties [16]. Both methods report impressive speeds of
property calculation: the Lipinski properties were calculated
with the CLUMBER program for a million member
benzodiazepine library in 96 seconds (10,460 products/sec).

The second pre-requisite for any algorithm is the "scoring
function", by which a proposed library can be compared
against the design objectives. The simplest scoring functions
involve similarity to a lead compound, and for this the most
common measure is the Tanimoto index, applied to
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Fig. (2). Common methods for constraining the property profile of a library to that of a reference set. The graph shows a reference
“drug like” set of compounds (bold line) which generally have molecular weight between 200 and 500. The dashed line represents a
library with a significant shift towards large molecules (sadly, a frequent occurrence). The first method (left) is to assign a penalty to
compounds which fall outside arbitrary limits, in this case set at below 200 and above 500 Daltons, the penalty being proprtional to
the distance, a, of the compound from the desired limit. The penalty score would be the sum of penalties assigned over all the
compounds in the library. The second method is to compute a measure of how close the library profile approximates the reference
profile, by computing each distance b for all values of molecular weight. This can be accomplished by a Root Mean Square
calculation. The third method (right) is to use a cumulative distribution, which enables the use of the χ2 test, for which the property
has to be binned (the figure has molecular weight binned into 100s). The alternative Kolmogorov-Smirnov stastic [45] allows the use
of binned or continuous distributions, and computes the difference between the distributions by summation of the distance c over all
points, or bins, in the graph.

structural fingerprints such as those used in chemical
database systems [17,18]:

Itanimoto = (A and B)/(A or B)

The Tanimoto returns a value between 1 (exactly similar)
and 0 (no similarity at all). There are a variety of alternative
similarity measures, all of which have their own particular
merits [19]. The opposite to similarity is Diversity, and
some computational schemes take this literally, so that the
diversity of a collection of structures can be computed using
the Tanimoto similarity between every pair of the n
molecules in the collection:

Idiversity = (Σ(1- Itanimoto))/n

It is more common to describe diversity in terms of a
metric that is bounded, which enables libraries of different
sizes to be compared. 3D pharmacophore fingerprints [20],
cell-based models [21,22,23 Schnur] and clustering [24]
have all been proposed. Recently, the concept of information
content has also been applied to library design [25]. This
attempts to design libraries optimised to ask specific
questions, and to allow an efficient deconvolution of
screening results in order to answer those questions. For
example, in a High Throughput Screen on a protein about
which nothing but the peptide sequence is known, one
might wish to ask “which 3D pharmacophores does this
protein bind to?”. Information-theoretic methods are an
alternative to diversity methods in this situation.

Finally, perhaps the most familiar scoring functions are
those derived for protein-ligand docking methods. As the
emphasis of this review is on the design and optimisation
algorithms required to address the particular problems of
combinatorial library design, readers are referred to several
published reviews [26,27,28,29].

Scoring functions can be conveniently classified as
"static" or "dynamic" [30]. Static scores relate to properties
of the product or reactant that do not change throughout the

design process, for example if a product fails the Lipinksi
Rule of 5, it always fails no matter what other products are
present in the library selected. Dynamic scoring functions
result from the consideration of the set of products in the
library selected. For example, in a diversity analysis, a
product may be considered redundant if it is too similar to
several other products in the set, but this result will change
if the product is included in a different selection. The
scoring function may then be set a design goal, which is
usually either to minimise (e.g. the size of the library to be
synthesised, or cost of reactants), or maximise (e.g.
maximise the diversity of the library, or the number of
compounds made that are predicted to be active).
Additionally, particularly when considering molecular
properties, the design objective may involve a less well-
defined goal, such as the fit of a property profile to a
reference profile, or the minimisation of the number of
products falling outside of a particular range. (Fig. 2)
illustrates the most common implementations of these
objectives.

With a means to access the virtual library products and
their properties, scoring function(s) and design objective(s),
a library optimisation algorithm may be applied.

4. LIBRARY OPTIMISATION ALGORITHMS

There exist several reviews of the literature in this area
[2,3,31,32], but a précis of the earlier methods will be
presented, in order to place the most recent developments in
proper context.

4.1 Frequency Based Methods

One of the earliest library optimisation procedures was
published by Sheridan and Kearsley [33]. This utilised a
fragment-based enumeration and a Genetic Algorithm, with a
scoring function that attempted to maximise similarity to a
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Fig. (3). A simple representation of the flow within evolutionary
algorithms such as that developed by Sheridan and Kearsley
[33]. Such algorithms typically require several hundred to a few
thousand iterations to produce a reasonable set of suggestions
for synthesis.

known lead molecule. Figure 3 illustrates how the algorithm
achieves this. There was no combinatorial constraint applied,
and thus the result was a collection of products that were of
interest. In order to reduce these ideas to practice, a method
for mapping a combinatorial set of reactants to the products
was required. A simple procedure, now often referred to as
MFA (Monomer Frequency Analysis [34] was applied to
achieve this. For the top scoring product structures, the
names of the reactants are extracted. The reactants are then
ranked by the number of times they appear in the top scoring
products, and the combinatorial library assembled from the
top scoring reactants, with the assumption that a high
proportion of the resulting products would appear in the top
scoring list. In favourable circumstances, this methodology
can be surprisingly effective, as demonstrated by Bravi et al.
when describing a refinement to the algorithm, known as
PLUMS [35]. A deficiency of MFA is that there is no
consideration of the combinatorial relationship of the
reactants, e.g. an acid A may have a high frequency of
occurrence in the selected products through combination
with a lot of different amines. If these particular amines are
only ever selected when combined with acid A, then through
the MFA method they will not have a high frequency of
occurrence. The acid A would therefore, not be combined
with the most favourable set of amines. PLUMS addresses
this issue by working in reverse order to MFA, by the
successive removal of poorly scoring reactants (the worst are
reactants that do not appear in any selected product). The
algorithm can be run until just one of each reactant remains.
The output is a graph of library size versus the number of
selected products contained in the library. This information
can then be used to make an informed choice as to the size

of library to be synthesised, and the proportion of "desired"
products contained in the library. Table 1 compares the
effectiveness of MFA and PLUMS for an example amide
library.

4.2 Stochastic Methods

Although freqency based methods are simple to develop
and fast to apply, they are not applicable to some of the
more complex designs demanded by the synthetic
community. In particular, the emergence of 3D
pharmacophore fingerprint methodologies [36] promised a
more biologically relevant description of chemical diversity
than had previously been accessible. These desires were to
inspire the development of the first algorithm to successfully
combine multiple design criteria, Harpick [20]. Harpick
utilised Simulated Annealing to navigate the combinatorial
design space, with molecules described by product
properties- 3D pharmacophore fingerprints, physicochemical
properties (Molecular Weight, clogP etc.) and a cost estimate
drawn from the ACD database [37]. To distinguish good
libraries from bad, Simulated Annealing requires a scoring
function. This was implemented as a weighted sum.

Table 1. Comparison of the Monomer Frequency Analysis
(MFA), PLUMS and VOLGA (A Product-Based
Method Similar to the Galoped Program [39])
Methods for Library Optimisation [35]

Method Number of Desirable Compounds Synthesised

MFA 39

PLUMS 69

VOLGA 69

DMFA 69
A virtual library of 10,000 compounds (100 acids and 100 amines) was analysed,
and 409 “desirable” compounds selected. The challenge for the algorithms was to
synthesise as many of these desirable compounds as possible using a 10x10
array. Dynamic Monomer Frequency Analysis (DMFA) [35], a modified monomer
selection procedure, was developed as a result of these comparisons, and is
included for completeness.

The Diversity property scores for each library were based
on the number of 3-point 3D pharmacophore patterns found,
whilst the property scores were based on the fit to a required
property profile (see Fig. 2). The use of 3D pharmacophores
for the design of diversity libraries was further extended by
the COMPSEL and DIVSEL methods [38].

At the time that these fledgling methods were developed,
there was widespread utilisation of split-mix, solid phase
synthetic chemistry methodologies, with the resultant
libraries screened as pools. A common methodology for the
deconvolution of active compounds from the pool was Mass
Spectrometry. It was thus advantageous to minimise the
number of products in the library, which have the same
molecular weight. However, this was to be accomplished
whilst maximising the diversity of the entire library. Around
this time, scientists were much influenced by the seminal
study of Gillet et al. [5] which quantified the superiority of
product based designs over reactant selection when designing
diverse libraries. The GALOPED program of Brown and
Martin [39] allowed an elegant amalgamation of the various
design criteria by encoding combinatorial libraries such that



Methods for Library Design and Optimisation Mini-Reviews in Medicinal Chemistry, 2004, Vol. 4, No. 10    1071

Fig. (4).  The Molecular Weight profile of a library before and after optimisation with the SELECT program. The Kolmogorov-Smirnov
statistic has a tendency to force a distribution towards the middle of the property range, at the expense of the extremes.

they could be evolved by a Genetic Algorithm. Although
similar to the work of Sheridan and Kearsley, this work
introduced some modifications necessary for application in
support of real-life combinatorial chemistry groups, in
particular the constraint that the solution must be
combinatorial. As with Harpick, a weighted mean scoring
function was applied to combine Diversity, size of library
and the molecular weight redundancy.

In order to perform their product versus reactant diversity
experiments [5], Gillet et al. had also developed a Genetic
Algorithm based combinatorial selection method. This
period also saw the publication of the Rule of 5 [Lipinski
Rof5], and the realisation by the scientific community that
the quest for diversity had been less than successful at
generating molecules, which could be optimised into drugs
[40, 41]. As a result, the SELECT program [42] provided a
flexible framework for the optimisation of multiple design
criteria. Diversity was measured by the fast cosine-similarity
method [43], or the slower near-neighbours approach [44],
and any property distribution could be defined and used to
derive the optimisation, using the Kolmogorov-Smirnov
[45] or χ2 statistic applied to the cumulative distribution.
Neither of these statistics allow a completely satisfactory
measure of the similarity between distributions. Figure 4
shows a characteristic property profile obtained after
optimisation with the Kolmogorov-Smirnov method.

Researchers at 3D-pharmaceuticals have explored
numerous methods by which to improve the efficiency and
effectiveness of combinatorial library design [46-52]. In
particular, the group has optimised the use of Simulated
Annealing methods in library optimisation. For example,
standard Simulated Annealing protocols enable the solution
space to be explored by small transitions from one solution
to another. Whether or not the algorithm should step to a
particular solution or not is usually governed by the scoring
function, E, of the solution. Lower (better) scores are always
accepted, whilst the adoption of a higher (poorer) scoring
solution is governed by the Metropolis acceptance criterion:

The variation of the "temperature", T, of the system
allows the search to sample larger or fewer proportions of

higher scoring solutions, thus allowing a broader or narrower
search, respectively. The constant KB is reflective of the cost
of jumping from one solution to another. For multi-
objective optimisation, although the group adopts a
weighted-sum scoring function, the cost function cannot be
known a priori. This has been mitigated by use of an
adaptive procedure, by which KB is allowed to vary during
the optimisation.

The work of Waldman and co-workers at Accelrys has
concentrated on the use of Monte-Carlo prodecures by which
to optimise a library [53]. The Cerius-2 software [54] allows
the use of a wide variety of scoring functions, which may be
optimised through the use of penalty functions and
constraints (Fig. 2). Large virtual libraries are managed
through the use of the CLUMBER programme [15]. They
have also prescribed a set of principles with which to judge
diversity scoring functions. Very few of those published to
date are able to achieve these sensible criteria, which gives
an indication of the difficulty of research in this area.

There are several other methodologies published [55,56],
which adopt a subset of the methodologies outlined above,
and reflect the current dominance of product-based,
stochastic optimisation procedures which, utilise a weighted-
sum scoring function.

4.3 Methods that Incorporate Reactant Selection

The success of product-based design methods has
somewhat obscured the benefits of reactant-based selection,
in particular the facts that product-based designs can be
difficult for non-experts to use, and that reactant-based
methods map directly to synthetic processes. Therefore,
some groups have sought to keep to a reactant-based design,
whilst mitigating for the worst excesses of these methods.

One of the earliest publications in Library Design
methods was the work of Martin and co-workers at Chiron
[57]. This involved the use of D-optimal design to select
diverse subsets of reactants, in the assumption that this
would lead to diverse products. The implementation was
very flexible, and allowed much intuition to be imparted by
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the chemist. Reactants were placed into bins, depending on
which properties were to be optimised. From these bins, the
user decided how many reactants should be selected. For
example, in order to mimic a property distribution of drug
like compounds, more compounds would be selected from
the middle bins than from the extreme. The use of multiple
design criteria was allowed by a sequential selection process,
which could be used to ensure that, say, high scoring
reactants in a docking procedure were added to the design
first, and then others were selected in order to achieve the
required property distribution. However, the use of a
sequential, and hence order dependent, selection process is a
major disadvantage, as the many trade-offs between reactants
(e.g. one that scores well in a docking method but which
yields products with high clogP) cannot be explored or
optimised.

The reactant-biased product-based (RBPB) method of
Pearlman and Smith [58] tries to combine the benefits of
reactant-based and product based designs. A large number of
constraints can be incorporated into the design to allow
control of library size, numbers of reagents at each position
and, importantly for "real-life" application, ensuring that the
proposed library fits with the appropriate format (plate
layout) of the automation to be applied in the synthesis. The
methodology has been implemented in the DiverseSolutions
(DVS) suite of programs that includes the novel BCUT [21]
descriptors for defining chemical space and efficient cell-
spaced diversity algorithms. All potential sub-libraries
satisfying the user-defined constraints are considered. As the
library design evolves, a library score is calculated that is a
function of the product scores for the candidate libraries.
Reactant scores are a function of two terms: a term based on
the product scores for products containing the reactant and
previously selected reagents at the other positions, and a
term for the potential products containing the reactant. The
reactant scores are transitioned from the possible to the
actual as the design proceeds. Product scores can be based on
similarity measures for focussed designs or (cell-based)
diversity measures for diverse designs. The algorithm also
makes it possible to quickly evaluate the effect of changing a
reactant or selecting a replacement, as is often necessary in
the iterative environment of real world library design. Even
if great care has been taken in selecting the initial reactant
pool, a selected reactant may not be available at the time of
synthesis or may not validate in trial reactions.

A hybrid of MFA and product-based designs has been
described by Graham et al. [59]. The paper places great
emphasis on the practical use of library design, in that
combinatorial constraints and plate layouts are examined.
Briefly, the virtual library is clustered. For each substituent
position R1, R2, R3 etc. the reactants are ranked by the
number of clusters that their product structures appear in.
This is a rough measure of the diversity imparted by the use
of that reactant (although has the same defects as the original
MFA as described above). The most diverse reactant is
selected, the clusters associated with the chosen reactant are
removed from the list, and the next reactant selected. With
these reactant lists in hand, a smaller virtual library is
constructed from them. A subset of products, one from each
cluster in the library, is selected from them. This will be a
non-combinatorial list. This set of structures, represented by
a matrix (see Fig. 5), is rearranged by swapping rows and

columns to ensure top left of the matrix is as dense as
possible i.e. contains the reactants which, when combined
combinatorially, give the most products in the desired list of
compounds.

Fig. (5). Matrix representation of combinatorial lib.

A true hybrid approach between reactant- and product-
based designs is the OptDesign methods [30]. For each
reactant R1, R2, R3 etc, the reactant is assigned a class (e.g.
"<$10/g" or "available in house"). Each class can be
weighted to adjust the proportion of representation in the
library. The design procedure is iterative, much like the
original Chiron method [56], and seeks to build the library
through successive blocks (plates) of combinatorial products.
Reactant level filters can be applied- for example, clogP or
molecular weight ("Static" filters), reactant similarity (reject
reactants similar to those already used) and product
similarity (reject products similar to those already in the
selected set).

4.4 Multi-Objective Methods

All of the above optimisation methods suffer from the
same problem. That is a restrictive formulation of overall
scoring function. The stochastic, product-based methods use
a weighted-sum fitness function to merge all the criteria
together, whilst the reactant-based methods are difficult to
extend to more than two objectives, as they are order
dependent, and therefore unable to explore the trade off
between different solutions. Indeed, it has been recognised as
a major problem [30]. The weighted-sum fitness function is
a problem because there is no way, a priori, of determining
the relative weights of say diversity and fit to a molecular
weight profile. Instead, several runs are necessary with
different weighting schemes. As the number of objectives
(terms in the function) increases the balance between the
weight terms becomes ever more complex. The very fact of
assigning weights in the first place can also have an impact
on the solutions evaluated by the search algorithm.

An attempt to mitigate this has been made through the
application of sensitivity analysis to the D-optimal design
method (see section 4.3)[60]. A further bin is established,
which is filled with all reactants. For each bin of interest,
four different designs are attempted, by increasing and
decreasing the allocated quota by one and then by two. The
effect on, say, the library diversity, of these allocation
changes can be monitored. Repetition across each pair of
design objectives can therefore, give a guide as to which
criteria are correlated, and this can be taken into
consideration by the chemist.
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Fig. (6). An illustration of Pareto Ranking.

Fig. (7). MoSELECT vs SELECT. The SELECT program was run multiple time to design a combinatorial library based on structural
Diversity and the fit of the molecular weight profile of the library to that of the WDI. The weights for the objective were varied, and
the results shown by the coloured triangles. The solutions found by a single run of the MoSELECT algorithm are able to span the
combined set of single solutions produced by multiple SELECT optimisations, without the user having to decide which weights to
apply.

A more radical solution to this problem, which
recognises the competition between objectives, is embodied
in a sophisticated enhancement of the SELECT
methodology, MoSELECT, which employs a Multi-
Objective Genetic Algorithm (MOGA) [61]. The method
allows a completely flexible environment in which to design
libraries with multiple design criteria, without the need to
decide how these should be combined to define a scoring
function. This is often assigned arbitrarily in previous
design methods, or ignored because the methods are unable
to incorporate multiple objectives. MoSELECT uses the
concept of Pareto Optimality (see Fig. 6) to rank solutions
according to their scores against all the objectives. By using
this method, a family of non-dominated solutions is
evolved, all of which have some advantage over the others in
at least one of the design criteria, and are therefore of interest
to the chemist. These solutions can be interrogated by the
chemist, and other criteria such as the celebrated "chemist’s
eye" used to select the most appropriate library to make.

This can be thought of as a shift from design (whereby the
optimisation algorithm attempts to find the best solution
available) towards decision support, where the algorithm is
used to present a series of solutions to the scientist, all of
which represent ways of achieving the stated design
objectives. Advantages of this method over other stochastic
approaches include the ability to simultaneously optimise
many objectives without having to choose a weighting
scheme a priori. By not curtailing the search space by use of
property constraints and weights, the genetic algorithm is
more efficient at searching the chemical space, and may find
solutions which are often made inaccessible to other search
procedures (see Fig. 7). Proponents of the reactant-based
approach often criticise product-based methods because of
the cumbersome link back to synthetic procedures. MOGA
alleviates these difficulties, as reactant based criteria, such as
cost [62] may be included alongside product based
objectives, without having to consider how they should be
weighted. In addition, recent development of MoSelectII
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[63] illustrates how this methodology may be used to
explore other synthetic practicalities, such as library size and
configuration, against the theoretical criteria of diversity and
molecular properties (see Fig. 8).

Fig. (8). Library size vs Diversity. An illustration of the
MoSELECTII program, which is able to treat the library size as
an objective, as well as a traditional objective such as diversity.
This type of trade-off plot, showing how library diversity at
first increases as the library size increases, and then reaches a
plateau, can be generated automatically.

4.5 DOCKING METHODS

A full review of docking methods and scoring functions
is beyond the scope of this article and the reader is referred
to several excellent recent reviews of this topic [26,27,28].
At the simplest level a docking algorithm can be used to
provide a filter for library design, where all enumerated
structures are docked and either the docking score itself or
some binary scheme (docks or not) based on a score cut-off,
used as one of the design objectives. However, such an
approach may be prohibitively time constrained even for
moderately sized virtual libraries. Hence several groups have
taken advantage of the combinatorial nature of the problem
to speed up the calculations. For example, the CombiBuild
approach [64, 65], based on the popular docking program
DOCK, provides an excellent example of the potential of
such methods. The scaffold is predocked (or the position
taken from a crystal structure) and each substituent position
evaluated independently. Probability maps for each position
are used to reduce the influence of steric overlaps between
positions. The program was used to design a non-peptide
library targeted against Cathepsin D, with impressive results
when compared to random or diverse reagent selections. In
the CombiDOCK approach, multiple positions of the
scaffold are generated and used to evaluate each substituent
position independently. Product scores are generated by
summing over the constituent reagents with a further check
on the higher scoring structures to remove bad
intramolecular contacts for example. [66]. Lamb et al. [67]
expanded on this "divide and conquer" approach to allow the
evaluation of multiple libraries against several protein
targets. The docking programme FlexX [68] uses an
incremental build up procedure for docking. The programme
FlexXC [69] extends this approach to combinatorial libraries
by docking the core first and efficiently sampling at each
reagent position. This can result in a 30-fold improvement
in docking time compared to docking each molecule
independently.

Several authors have adapted established de novo design
programmes to take account of the combinatorial nature of

the problem and also to get around one of the issues of such
programmes, that of synthetic tractability. Thus, Johnson
has reported on an adaptation of the programme SPROUT
[70], VLSPROUT, specifically designed for efficiently
scoring virtual libraries. Bohm et al. [71] have demonstrated
how the LUDI programme [72] can be used in this context
by designing a library against Thrombin, discovering several
active compounds.

5. LIBRARY OPTIMISATION IN PRACTICE

The library design methods described above are in
widespread use within the pharmaceutical industry and a
number of successful applications are emerging. Pickett et
al. [73,74] used a Monte Carlo search algorithm to optimise
both the combinatorial efficiency and bioavailability of a
library targeted against p38 MAP kinase. The design
objectives incorporated descriptors relevant for drug
absorption (polar surface area, Lipinski's rule of 5 [75]) and
the designed library showed a significant improvement (as
measured by Caco-2 permeability) over a previously
synthesised library. A number of potent and orally
bioavailable p38 MAP kinase inhibitors were identified
suitable for further biological investigation.

N

NH2N

NH2

N
R

R1

Fig. (9). The 2,4-diaminopyrimidine substructure which formed
the basis of the virtual library for the Structure based library
design work of Wyss et al [76]. The R groups derived from a set
of secondary amine reagents.

A successful application of structure based library design
has been reported by Wyss et al. [76]. A library of
compounds was targeted against dihydrofolate reductase
(DHFR) using a combination of structure-based and
diversity-based selection approaches. The program FlexX
[68] was used to dock 9884 library products with the
constraint of a fixed 2,4-diaminopyrimidine core as defined
by a crystal structure (Fig. 9). 252 from 300 of the top
ranked products were synthesised. In addition, a random
selection of 150 compounds for which no dockings were
found were combined with the lowest 150 scored solutions
to give additional 300 compounds, of which 269 were
synthesised. 500 compounds were also selected from the full
product space by a diversity approach, as defined by the 3D
properties of the reagents. The structure-based library gave a
21% hit-rate compared to the diverse library (3%), and the
lowest scored solutions (1%).

6. CONCLUSION

This paper has catalogued the journey of Combinatorial
Library Design from the initial philosophical debates
(monomer vs product), through scientific implementation
(stochastic algorithms, scoring functions) to decision
support (MOGA). It is not an exaggeration to claim that
combinatorial design, in the strictest sense, is essentially a
solved problem. It is true that the implementations of these
algorithms need to become more efficient, in order to cope
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with the enumeration, search and evaluation of very large
virtual libraries. Indeed, the size of these virtual libraries
will continue to grow, as more commercial building blocks
are made available, and further studies increase the scope of
chemical reactions. However, the greatest problem facing
practitioners is the accuracy of available scoring functions for
docking, similarity, diversity and ADMET prediction. Until
these are improved to the point that educated guesswork is
no longer a competitor, the enormous potential of the
elegant algorithms expounded in this text cannot be
fulfilled. And only then may we truthfully claim to practice
Library Optimisation.
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